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PREFACE

This is the first annual report on Contract N00014-82-K-0805, "Nonlinear

Effects in Long Range Propagation." The study has been organized under three task

headings as follows

Task I--Shock pulse propagation in a homogeneous ocean

Task li--Nonlinear propagation in a depth-dependent ocean

Task Ill--Nonlinear propagation in a caustic region

Considerable progress has been made in all three tasks. In the present report,

however, attention is focused on Task I. The investigation of inhomogeneous ocean

effects presented in this report is complete, and Task II is accordingly regarded as

accomplished.

A further report is in preparation which will summarize the substantial

progress made to date on Task I. Also prior to the final report a paper is to be

prepared on the Task I study, for presentation at the 10th International Symposium

on Nonlinear Acoustics, Kobe, Japan (25-28 July 1984).

0
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I. INTRODUCTION 0

In a real ocean whose properties are not uniform, but vary slowly--on a

wavelength scale--with position, the propagation of finite-amplitude acoustic

signals differs in three important ways from that in a uniform medium. -

(a) Ray paths are curved (Fig. 1, page 5), and ray tube areas are no longer

proportional to s2 . The inverse-distance spreading law for weak waves is

replaced by 0

(S/pc) Y p(t',s) = f(t') (lossless medium), (1)

where S is the ray tube area, and S

t'= t -fds/c (2)

defines the retarded time for outgoing waves of small amplitude. -

(b) Cumulative nonlinear distortion of the signal is described (as in the case

of a homogeneous medium) by replacing the linear retarded time variable

in Eq. (1) with a modified time variable r. However, the nonlinear part *0

of r grows at a variable rate along the ray path, which depends not only

on S(s) but also on the local fluid properties p(s), p(s), c(s).

(c) The rates of attenuation and dispersion in a real (lossy) medium are

additionally dependent on position.

As a first step towards a model which includes all of these effects, we

consider the following approximation. Finite-amplitude sound in a lossless ocean is

considered as propagating along the ray paths followed by small-signal waves.

Self-refraction of the signal wavefronts is thus neglected. Furthermore, the only

losses in our model are those which occur at shocks in the waveform.

Within this context, we are able to introduce a generalized version of the

reduced propagation distance (x) to account for effects (a) and (b) above. Analytical



"-" L -- ---- r*. --- .... ... - -- -- '-* .. .. -_ . . . . ... -7 -. T

results have been obtained for the reduced distance by assuming a horizontally

stratified ocean with simplified property profiles. To allow for realistic variations

of temperature, pressure, and salinity with depth, a program has been written to

evaluate x numerically, and results for some typical profiles are presented.

Finally, we note that the importance of the x generalization lies in the fact

that all the predictions of weak-shock theory for a uniform ocean become available

for the nonuniform case, merely through substitution of the appropriate x value.

2S
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II. LITERATURE SURVEY

The generalization of ray theory to allow for nonlinear waveform steepening in

a slowly varying medium has been discussed in detail by Carlton and Blackstock I and 0

Pelinovskii, Petukhov and Fridman. 2 Their results are stated in terms of a reduced

propagation distance, denoted here by x. Physically, x represents the plane wave

propagation distance, in a medium of properties (po,co), which yields the same

amount of nonlinear distortion as propagation along the actual ray path from s0 to s.

Mathematically, x is given by an integral expression along the ray path; a simplified

derivation is given at the beginning of Section III.

Following an inconclusive earlier paper by Fridman, 3 Petukhov and Fridman4 4

addressed the overall problem of describing blast-wave parameters in a stratified

ocean. They used the weak-shock model to obtain the departures, from their

homogeneous ocean values, of the peak pressure (p ), time constant (0 ), and related
5 5

signal properties. It is important to recognize that much of the deviation which

they report from the reference case is a consequence purely of linear acoustics (i.e.,

ray curvature).

To explain this last point, we note that linear ray acoustics predicts different

values of ps(s)--at the same distance s--along different rays in an inhomogeneous

ocean. The variation arises from the factor (S/pc) in Eq. (1), and has nothing to do

with the nonlinear effects which are the subject of the present report.
- 0

In the present study we avoid confusion between the linear and nonlinear

effects of ocean property variations, by focusing specifically on the reduced

distance. A knowledge of x completely characterizes the nonlinear properties of a

given propagation path, within the framework of weak-shock theory. Consequently

it appears preferable to present information on x for different ocean profiles, ray

launch angles, etc., and leave the user to draw conclusions appropriate to whatever

particular initial waveform is of interest.

3



The calculation of x in any particular case requires a knowledge of the
nonlinearity coefficient (P), density (p), and sound speed (c) as a function of
position. In seawater these properties are related to the local temperature (T),
salinity (S), and pressure (P). Convenient approximations are given in Refs. 5
through 9, and cover conditions encountered in most of the earth's oceans. 10 The
relevant formulae needed for the present study have been assembled in Appendix B.

1 P
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111. ANALYSIS OF NONLINEAR PROPAGATION IN
A SLOWLY VARYING OCEAN

A. Definition of Reduced Distance

S s

sI

TUBE

FIGURE 1I.
DEFINITION SKETCH FOR RAY TUBE IN DEPTH-DEPENDENT OCEAN

The propagation distances is measured from the source,
along the curved ray path.

2As indicated in the Introduction, we expect the quantity Sp /pc (where p is the

acoustic pressure) to remain constant following a progressive wavelet. The wavelet
propagation speed, along the ray tube in Fig. 1, is modified at finite amplitudes to

z + P ls,p (3) -

Here is the nonlinearity parameter, and u is the particle velocity.

A solution for progressive waves, to first order accuracy in p,is therefore of

the form

(~P f t J c+ (Ppc)p

uf(t) + pds) (4)
f PC3



where the retarded time t' is defined by Eq. (2). Equation (4) may be reduced to the

standard form for nonlinear plane waves in a homogeneous medium, by means of the

substitutions

= 5S / c)( -) (reduced pressure) (5)=p (-§o0/ POCo

and

= S ds' (reduced distance) . (6)

Here a is a thermodynamic property of the medium, defined by

a =j3(pc 5 ) - . (7)

The reference ray tube area S ° refers to a position close enough to the source that S

the rays are still straight; it will be replaced later in terms of an arc length (or

initial distance) so .

The solution in terms of reduced variables p, x is thus 0

_t /_ xp), (g)5 =f V +(,
3

in which the subscript o denotes reference values, chosen for convenience to match

the properties of the source region. The reduced quantities p, x may be interpreted

as the plane wave pressure and propagation distance in the reference medium.

It is convenient for later purposes to express the reduced distance i as

RsIn -I- G) (9)
0 so 0°

6
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numerical results for the dimensionless factor G are presented in the remainder of

this report. Note that the function G is equal to I for a homogeneous ocean, in

which case s is simply the radial range and Eq. (9) reduces to the usual expression

for simple radial waves.

Departures of G from I indicate modification of the effective propagation

distance by the combined effects of ray tube geometry and medium inhomogeneity.

In particular G > 1 implies that distortion develops more rapidly than for spherical

waves in a homogeneous medium, and G < 1 that distortion develops more slowly.

B. Analytical Formulation of i Integral in Terms of Ray Coordinates

The ray tube area ratio in Eq. (6) may be expressed as

~-= 4 sine cosO0  (10)
-S-= ko)zJiS

* or equivalently as

S xr t 0 1)
- cose coso o  , = I(11)

o x 0  A -x

Here 0 (see Fig. 1) is the ray angle, and 0o is the ray launch angle; x is the

horizontal range, and x0 (corresponding to S ) is the reference value near the

source. These expressions assume a horizontally stratified ocean and axisymmetric S

(cylindrical) spreading. Equation (10) is the form used by Petukhov and Fridman;4

Eq. (11) is the form used at ARL:UT in the MEDUSA ray tracing program.11

For any given sound speed profile, the ray coordinates (xz) and the launch - S

angle derivatives (4 or ) may be calculated. Then if the a profile is also specified,

Eq. (6) for i may be evaluated by integration.

In general the result will not be expressible analytically in closed form. _0

However, some useful analytic results have been obtained by assuming a power law

relation between ct and c, of the form

7 5
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a C-n

=  " (12)a c
0 0

These are described below. For a discussion of the validity of Eq. (12), see
Appendix C.

C. Explicit Analytic Results for a Linear Sound Speed Profile

By using the known solution for ray trajectories in this case, we find .

S 2 2 ( sin 0 - sin e0 2

2D
S -s )sec 2 0 (13)

S s

Note that s(l - 0 0) is a constant along each ray, equal to the radius of curvature.
Substituting in Eq. (6), and using Eq. (12) along with

c _ cos 
(4co  cos 0 o  (14)

gives in the limit of small so

= im so cos0 • (sine- sin eoG cos -e n •-(5)S
im so ) 0 O Cos 0 (15) -

o0 (s0)

Since the integral in Eq. (15) can be expressed in closed form for n=+1 and n=O,

the function G can be found for these cases. In particular, the case n= 1 gives I using
formula 2.561(5) in Gradshteyn and Ryzhik's Table of Integrals12

sinO - sin O  tan(1 - + -) sineo
G ( e,e) 0 *°4 2 (16)

o (-0 0 cos Itan~ff +

This result is of interest since equation (12) with n=l gives a reasonable approxi-

mation to the deep ocean behavior of at (see Appendix C).

8 ..



The case n=0 corresponds to the assumption of constant a in the reduced

distance integral, Eq. (6). Although not claimed to be realistic, it provides a useful

comparison. The resulting expression for G [obtained using formula 2.551(3) in the

Table of Integrals 12 is

tan!0 - tan! 0 4cos 0 cos 2 1 0o
G(8o , 0) = (0- 0o )  + cos0 -sin o tan 0 (17)

1.2 G

1.1
o = 22.50

' 20  +10 0 -10 -20 0 - deg
1.0

n0O(P 5 C 2.5 ccC0

0.9 n=.

95 C 2,5 ) cC-10
0.8

FIGURE 2

DISTANCE MODIFICATION FACTOR G PLOTTED AGAINST RAY ANGLE
Results based on analytic solution for a linear sound speed profile.

Figure 2 shows G(n=l) and G(n=0) plotted against 0, for an initial launch angle

of 22.5* (in the direction of increasing c). A significant conclusion may immediately

be drawn: variation of ocean properties with depth has an important direct effect

on the reduced distance (through the a factor in Eq. (6)), which is comparable with

the effect of nonspherical spreading.

90



D. Asymptotic Approximations for Nonlinear Sound Speed Profiles

Analytic results for G may also be obtained for more general profiles by

treating the relative variation in sound speed as a small quantity. Thus we assume

the quantity

to have a numerical value much less than 1. 

It is convenient to define the sound speed profile in inverse form, by

expressing z as a second-degree polynomial in a:

2Sz 12 '9
a - ba (a,b constants) (19)a 2

This allows a first-order (in a) departure from linearity.

If the i integral is evaluated using Eq. (19), and is consistently approximated

to first-order accuracy in a, we obtain the following expression for the factor G as

defined in Eq. (9):

G -(n+!)a (20)

Details of the analysis are given in Appendix D. On the other hand, expanding the

available exact solutions for n=l (Eq. 16) and n=O (Eq. (17) in powers of (0- 0o ) yields 0

the first-order approximations

-3/2
G(n )  

'- a (21)

c 1/2
2(22)

0

100



These evidently agree with Eq. (20) as special cases. Since neither the profile S

curvature parameter b, nor the launch angle 00, appears in the above results, a

useful conclusion emerges from the asymptotic analytical treatment- -namely that

the distance modification factor G is principally a function of the sound speed ratio

c/c 0 , and only secondarily a function of ray launch angle and the precise shape of

the c(z) profile. The predicted trend of G with c/c ° is given by Eq. (20) as

G ,,- , (23)

where n is the index in the approximate i versus c relation, Eq. (12).

However, a condition attached to all these asymptotic results is that the ray

angle must not approach zero (horizontal propagation), since the series expansions in

Appendix D break down at this point. As a consequence, Eq. (23) cannot be applied

to a ray which has passed through a vertex.

In the remainder of this report, we present exact analytic and also numerical

calculations of G for particular cases. By plotting G as a function of c/c o for

different launch angles and ocean profiles, we are able to test the conclusions

reached above.

E. Comparison of Exact and Asymptotic Predictions for the Linear Profile Case

We begin by testing Eq. (23) against a case for which Eq. (16) provides an exact

analytic solution: namely the idealized linear sound speed profile with ac constant.

Values of the distance modification factor G, calculated from Eq. (16), are plotted

in Fig. 3 against c/c . Both downward-propagating rays (launch angles 00=150,

22.5', 30", 45, 60", 75") and upward-propagating rays (Oo=0', -15', -30", -45, -60",

-75 ) are shown.

The breakdown of the asymptotic (c/c 0 )3/ 2 prediction, given by Eq. (23) with

n=l, is apparent for near-horizontal rays as expected. Figure 3 shows that the

asymptotic prediction is nevertheless quite accurate for launch angles more than 30'

11
9



from the horizontal in either direction. The curves for 0 =+60 ° and +75 are barely
distinguishable from the asymptote.

1.2

cco ,.5 G(n = 1)

-300
- 15 0

-15 ° ,,' 1.1

00

0.9 1.1 -
* I I I I I I I I I I I I I S U * I I

cose c
Cos 0 0 c

150

0.9

30

22.50

0.8

FIGURE 3

PLOT OF G VERSUS SOUND SPEED RATIO

This plot, for a linear sound speed profile, shows results

assuming c constant. The asymptotic (c/c ) 3/2 prediction

is shown, together with the exact analytic calculation for

selected launch angles (as marked on each curve). The rays

launched at 15° and 22.50 have been terminated at their

vertex points.

12



In Section IV below, we describe a numerical scheme for evaluating the factor
G along any ray path, and results are presented for more realistic ocean profiles.

These provide a more searching test of the asymptotic theory, and also allow a study

of caustic formation.

1

13 _



IV. COMPARISON OF NUMERICAL AND ASYMPTOTIC
PREDICTIONS FOR TYPICAL OCEAN PROFILES

Since analytic expressions for G, such as Eqs. (16) and (17), are available only

for highly idealized profiles of c(z) and a (z), a parallel objective has been the

development of an efficient numerical code with which G can be evaluated

numerically, for any variation of ocean properties with depth.

The objective has been met by adding on to the ARL:UT MEDUSA program a

post-processing stage, which takes MEDUSA output quantities (such as ray angle,

path length, etc.) and performs a numerical integration along the ray path to arrive

at G. The method is described in detail in Appendix F. MEDUSA is a versatile and

accurate ray tracing program developed at ARL:UT by T. L. Foreman and described

in Ref. 11.

A. Accuracy of Numerical Solution

The numerical calculation scheme has been tested against the known exact
solution for G, Eq. (16), for a linear c(z) profile with ac=constant. The test case was

specified by

C=C0 (1 +z/a) , a=88,900m; (24)

downward-going rays were launched at angles 0o=15 °, 22.5, and 60° from depth z=0,

and allowed to propagate to z = 2900 m. Table I compares the numerical results for .

horizontal range, x, and the nonlinear distance modification factor, G, with the

exact analytical predictions (xa, G a) for each case. The quantities tabulated are

Xx a' in meters, and the relative error IG-Ga I/ I Ga- II. Note that the first of

these indicates the accuracy of the basic ray tracing program, while the second is a _

measure of the combined program accuracy.

The first row in Table I gives the errors for the most accurate version of the

numerical calculation. Here the profiles c(z) and a(z) are specified analytically. By .0

the end of the propagation path, the accumulated relative error in G is only of order

10- . This is a measure of the accuracy of the ray path solver, which is further

15
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TABLE I. ERRORS IN COMPUTED NONLINEAR RANGE B
FACTOR G, AND HORIZONTAL RANGE x

Propagation through a constant-gradient layer at dif-
ferent launch angles (in direction of increasing c).
Layer thickness = 2900 m; sound speed ratio 1.033
(a = 88 800 m). The numbers Nc, N denote the 0

number of points used to define the sound speed and a
profiles (see text). Results computed on the ARL:UT
CYBER machine with 32-bit word length.

0o  150 00 22.50 = 600

Nc Na a 1-G a a- lG a Xa tAG: a
(in) (mn) (mn)

so -0.106 1.0 10 5  -0.010 1.0 10 - 5  0.001 1.7 I0 - 5

0 1 10 -0.106 2.8 10- 4 -0.010 3.3 10 - 4 -0.001 2.7 I0- 4

25 25 -0.139 9.7 10- 3  -0.014 7.0 10- 3  0.000 2.0 10 - 3

10 10 -1.55 2.8 102 -0.15 1.0 Io2 0.005 7.4 10

16
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indicated by the small errors in horizontal range (a few millimeters, except for the

shallowest ray).

Subsequent rows in Table I show a progressive loss in accuracy as fewer points

are used to specify the c(z) and c(z) profiles. Interpolation of c and at values is
achieved by joining the profile points with straight lines in the (1/c, z) plane and the

(u, z) plane respectively. The resulting corners are rounded locally by cubic splines,

in order to make the profiles continuous through the first two derivatives (i.e., no

jumps in profile slope or curvature). As a result of the interpolation scheme, even
though the c(z) input points lie on a straight line, they are not interpolated by a

straight line in the program; and the smaller the number (Nc ) of profile points, the
more the interpolated profile deviates from the ideal straight line case.

Table I shows that reducing the number of points in the sound speed profile

increases the errors in x and G (with the exception of the 60 ray path example,

where the 10-point G calculation is unexpectedly accurate). Note that the
increasing errors which appear as the number Nc is reduced are not controlled by

the finite step size in the ray tracing program. In fact the step size varies

according to the local curvature along the ray path, being automatically selected to

meet an accuracy criterion. As a result the analytic c(z) calculation requires fewer

steps--by a factor of about 4--than either of the calculations for finite Nc*

We conclude from Table I that a relative error in (G- 1) of less than 3 percent
is provided by the present numerical scheme, for ocean profiles which are specified

by at least 10 points (and preferably by 25 or more). The critical number is Nc (the

number of points defining the sound speed profile), since this affects the accuracy of

the resulting ray path.

The 3 percent figure in fact represents a considerable achievement, since

IGa - 1 is a small number (varying in the example from zero at the beginning of the
propagation path to 0.045 at the end; cf. Eq. (21)). It is interesting to note that this

accuracy is degraded if care is not taken in transferring MEDUSA output data to the
integration program; in order to avoid rounding errors, the data was transferred in

octal representation, with full accuracy retained.

17



B. Specification of Ocean Profiles for Numerical Calculations

In order to arrive at c(z) and a(z) profiles which are consistent with real ocean
properties, it is convenient to begin with temperature and salinity profiles T(z) and
S(z). The hydrostatic pressure P(z) is conveniently given by Leroy's formula, Ref. 5. -

Appendix B summarizes the relations between these quantities.

Since nonlinear effects are most likely to occur over propagation paths of

several kilometers, we are principally concerned with ocean properties in the deep ,

sound channel and down to depths of around 10 km. Conditions within the first

200 m below the surface, which are much more variable, are not important for the

present study.

Some typical deep ocean temperature and salinity profiles, taken from

Refs. 13 and 14, are shown in Figs. 4 and 5, respectively. The general pattern is a

rapid drop in temperature with increasing depth between about 200 m and 1000-

2000 m, followed by a leveling off. Thus the temperature is almost constant at

greater depths. The salinity profiles in the North Atlantic show a trend similar to

the temperature, but there is relatively little salinity variation over the whole water

column in the North Pacific profiles.

Based on these trends, "representative" idealized profiles have been con-

structed for both T(z) and S(z), made up of 2 or 3 straight-line segments. The

profile points are specified in Table H; they are also marked on Figs. 4 and 5. One

pair of profiles (open circles) represents the North Atlantic, around a latitude of -9

20 ° N. The other pair (solid circles) represents the North Pacific, around 36* N.

C. Sound Speed Profiles and Computed Ray Paths

The sound speed at 35 specified depths, distributed over the water column

between the surface and a depth of 10 kin, was computed from the temperature and

salinity data in Table H. The results are listed in Table 1I, and the profiles are

plotted in Fig. 6. With the tabulated c(z) data as input, ray paths were then

calculated using the MEDUSA ray tracing program. This was done for each of the
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TABLE II. IDEALIZED TEMPERATURE AND SALINITY PROFILES
USED FOR NUMERICAL CALCULATIONS

Location Depth,z Temperature,T Salinity,S

(W) (C) (0/00)

N. Atlantic 0 23 37.0

(20 ° N) 1,000 4.5 35.0

10,000 3.5 34.9

N. Pacific 0 15 34.3

(360 N) 600 4 34.0

1,800 2 34.6

10,000 1 34.6

standardized ocean profiles, using 3 different source depths; from each source

depth, 5 or 6 rays were launched at different angles. The results are summarized in

Figs. 7, 8, and 9.

Figure 7 shows the resulting ray paths for the North Atlantic profile. For

source depths (z ) of 200 m and 1200 m, the shallower rays exhibit a vertex: we

note that the asymptotic analysis of Section III gives no guidance beyond this point.

Furthermore, the rays in Fig. 7(b) launched from near the sound channel axis

(zo = 1200 m) at angles of 0° and 7.5*are confined to the sound channel.

The channeled rays exhibit caustic formation (at approximately 8 km and
29 km horizontal range respectively), at which point the concept of a distance

modification factor based on nonlinear ray acoustics breaks down. Accordingly, in

the results which follow the calculation of G may be terminated for one of three

reasons:

(a) The ray reaches the ocean surface.
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TABLE III. SOUND SPEED PROFILES DERIVED FROM THE IDEALIZED
TEMPERATURE AND SALINITY PROFILES OF TABLE II

(a) North Atlantic (b) North Pacific

# Depth (m) Speed (m/sec) # Depth (m) Speed (m/sec)

1 0 1532.260 1 0 1506.533
2 10 1531.942 2 10 1506.106
3 20 1531.622 3 20 1505.677
4 30 1531.299 4 30 1505.244
5 40 1530.973 5 40 1504.809
6 50 1530.644 6 50 1504.370
7 70 1529.979 7 70 1503.483
8 90 1529.302 8 90 1502.584
9 110 1528.614 9 110 1501.672

10 150 1527.203 10 150 1499.811
11 200 1525.375 11 200 1497.413
12 250 1523.472 12 250 1494.937
13 300 1521.494 13 300 1492.382
14 400 1517.307 14 400 1487.035 -
15 500 1512.807 15 500 1481.373
16 600 1507.986 16 600 1475.460
17 700 1502.842 17 700 1476.423
18 800 1497.374 18 800 1477.447
19 1000 1485.535 19 1000 1479.499
20 1200 1488.710 20 1200 1481.557 0
21 1600 1495.229 21 1600 1485.690
22 2200 1505.096 22 2200 1494.368
23 2800 1515.071 23 2800 1504.368
24 3400 1525.155 24 3400 1514.486
25 4000 1535.348 25 4000 1524.721
26 4600 1545.645 26 4600 1535.073 0
27 5200 1556.045 27 5200 1545.539
28 5800 1566.542 28 5800 1556.114
29 6400 1577.130 29 6400 1566.794
30 7000 1587.802 30 7000 1577.572
31 7600 1598.550 31 7600 1588.440
32 8200 1609.362 32 8200 1599.390 .0
33 8800 1620.228 33 8800 1610.410
34 9400 1631.133 34 9400 1621.488
35 10000 1642.065 35 10000 1632.611
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(Although ray tube areas could be computed for the surface reflected

ray, the phase change on reflection makes it necessary to restart the
nonlinear distortion calculation from this point.)

(b) The ray reaches the ocean bottom.

(Again, continuation of the G calculation beyond this point has no

meaning, except in the special case where the bottom reflection

coefficient is equal to 1.)

(c) The ray tube area approaches zero.

(At the caustic, the ray tube area vanishes but G remains finite. An

asymptotic analysis of the behavior of G in this region appears in

section IV-F below.)

The program which calculates G stops as soon as one of these criteria is met.

Corresponding ray paths for the representative North Pacific profile are shown
in Fig. 8. The general pattern is similar to that of Fig. 7. Again, there are two
channeled rays shown in Fig. 8(b); the cycle lengths and ranges to caustic formation
are somewhat larger than for the corresponding rays in Fig. 7(b).

In the next three subsections we present a discussion of the numerical G values

computed along these ray paths.

D. Numerical Results for the Distance Modification Factor G: Variation with
Horizontal Range

Figures 9 and 10 show how the distance modification factor G varies along
each ray path, for the North Atlantic and North Pacific cases respectively. To

interpret these results, we recall the definition of G. Given a uniform ocean which
_0

matches the real ocean near the source, and given the same source level, sG is the
propagation distance required to reproduce the signal distortion found at distance s

along a ray path in the real ocean. Thus G values greater than 1 indicate enhanced
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nonlinear distortion, and vice versa. (Note that throughout this report, dissipative

phenomena- -except at shocks--are neglected: in reality a signal propagating along

a ray path of increased length would suffer additional attenuation and dispersion,

which are being left out of account for the present.*)

We first examine Fig. 9, which presents results for the North Atlantic profile.

(The results for the North Pacific are qualitatively similar--see Fig. 10.) Three

source depths are used: (a) 200 m, (b) 1200 m, and (c) 10,000 m, corresponding to

the ray paths in Figs. 7 and 8. We shall see that provided the sound speed continues

to increase (or decrease) monotonically along the ray path, the variation of G

follows the trends predicted by the theory of Section III. On the other hand, once

dc/ds changes sign, G departs quite dramatically from the predictions of the

asymptotic theory.

1. Source Depth 200 m

This case provides a good illustration of the departures mentioned above.

Figure 9(a) shows G reaching a value of 3.5 as the shallowest ray (eo=7.5*) reaches

the surface. The growth of G in this case is progressive, starting from a horizontal

range of about 5 km which is the point at which the downward-going ray crosses the

sound channel axis. A similar progressive growth in G may be seen along the 00=15

ray, although it is less pronounced (G reaches 1.8 at the surface). Rays launched

more steeply downwards are cut short by the bottom, but would presumably continue

this trend in an ocean of infinite depth (the present model ocean is 10,000 m deep).

Two principal observations may be drawn from Fig. 9(a). First, shallow angle

rays launched towards the sound channel axis can acquire sufficient focusing, by the

time they cross the axis, that quite large G values accumulate during subsequent

propagation back to the source depth. This is a consequence of the reduction in ray

tube area S(s) relative to spherical spreading.

* The validity of the lossless fluid assumption, for typical underwater shock pulse
waveforms with various initial timescales, is being assessed (as a function of
propagation distance) as part of a follow-on to the present investigation.
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The second observation relates to rays launched more steeply towards the 0

channel axis (e.g.,in Fig. 9(a), the 22.5 ° ray), which penetrate beyond the axis into
regions of relatively high sound speed. Somewhat surprisingly, in this case the
initial focusing over the first few hundred meters (between the source and the sound
channel axis) is sufficient to cause G to go on increasing for several thousand meters 0

more, despite the defocusing effect of a monotonically increasing sound speed as the

ray propagates downwards.

2. Source Depth 1200 m I

In this case the source is just below the sound channel axis. Rays
launched downwards therefore experience a progressive increase in sound speed until
a vertex is reached. According to the asymptotic theory of Section III, which S

predicts G m, (c/co) 1.5 , G is expected to decrease slowly from its initial value of
0

one, and this is observed in Fig. 9(b) (00=7.5", 15', 22.5). Beyond the vertex the
asymptotic theory offers no guidance; but the numerical results in Fig. 9(b) show a

flattening off, followed by either a rapid increase as a caustic is approached (00=0 ,

7.), or a gentle upturn as the ray reaches the surface (00=15, 22.50).

The variation of G near a caustic will be discussed further in subsection F
below. Otherwise, the main conclusion drawn from Fig. 9(b)--and the similar results
for the North Pacific profile in Fig. 10(b)--is that G values for sources close to the

sound channel axis remain in the range 0.85 to 1.0, caustic regions excepted.

3. Source Depth 10,000 m -

The rays launched from the deepest source location experience a
monotonic decrease in sound speed (dc/ds < 0) over the first 90 percent or more of
their path to the surface. The asymptotic theory of Section III applies to this -

region, and the calculated values of G in Fig. 9(c) show the predicted behavior all "
the way up to the sound channel axis (depth 1000 m). Values of G at this depth vary

from 1.12 (00=0) to 1.25 (80 05°).
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Beyond the sound channel axis, dc/ds changes sign and a one-to-ene relation

between G and c/c o is no longer expected. Figure 9(c) shows that G actually

continues to increase between the sound channel axis and the surface, maintaining

the trend established over the earlier part of the propagation path.

Corresponding plots of G versus x for the same three source depths (zo=200,

1200, 10,000 m) are shown in Figs. 10 (a,b,c) for the North Pacific profile. The same

trends are observed as in Fig. 9, and the same conclusions apply. The main

differences of detail occur with the caustic forming rays (zo = 1200 m; 00 = 0 °,

01

7.5), and these are discussed in subsection F which deals specifically with caustics.

E. Numerical Results for the Distance Modification Factor G: Relation between
G and c/c 0

A major conclusion from the theoretical analysis in Section III is that under

certain conditions--principally when ray angles are not too shallow and also dc/ds

does not change sign--G is a function of c/c 0 only. Some supporting evidence from

the present numerical study has been discussed in the preceding paragraphs. We now

test the theoretical conclusion directly using Figs. I I through 13, which plot G

versus c/c for each of the source depths in turn.
0

For the shallowest source location (zo = 200 m), the rays travel only a short

distance before dc/ds changes sign at the channel axis (z = 1000 m for the North

Atlantic, or 600 m for the North Pacific model profile). The theory is therefore not

severely tested in Fig. 11; the plots terminate on the axis, before G has changed

significantly. Nevertheless the collapse of results for different launch angles (apart

from the shallowest angles, 0 =7.5° and 15) is encouraging.
0

The collapse is next tested for rays launched from zo = 1200 m, in Fig. 12.

The dc/ds criterion terminates the plots at either the channel axis (when 00=0), or

the first vertex (0o=1*, 22.5). The two steepest rays are terminated at 10,000 m

depth, giving G=0.89. There is a definite tendency towards collapse on a c/c 0 basis,

with the main departures occurring as a vertex is approached.
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Finally, Fig. 13 shows the bottom-launched ray results plotted in the same

format. The plots in this case all terminate at the sound channel axis. At this point

the spread in G values, across the launch angle range -15*to -80 °, is only about

3 percent (North Atlantic profile) or 4 percent (North Pacific profile).

From these plots of G versus c/c we may deduce power laws of the form

G = (c/co)- m , (25)

which give a fairly accurate description of the way the distance modification factor

varies along rays which are not too near the horizontal. The values of the index m

listed in Table IV represent an approximate straight line fit to the results for

0o=+80". They range between 1.05 and 2.3, as compared with the value 1.5 arrived

at from an asymptotic analysis in Section III for an idealized ocean profile.

TABLE IV. INDEX m OBTAINED BY FITTING THE POWER LAW

G = (c/ci) - m TO THE CURVES IN FIGURES 11-13
(STEEP RAY LIMIT)

Figure No. Index m Depth range

11 (a) 1.75 200 m down to 0
11 (b) 1.55 sound channel axis

12 (a) 1.1 1200 m to 10,000 m
12 (b) 1.05 (downward propagation)

13 (a) 2.3 10,000 m to channel axis S
13 (b) 2.3 (upward propagation)

A significant conclusion from the results presented in Figs. 11 through 13 is
that an order of magnitude estimate of G is possible on the basis of c/co alone,

provided the ray path is such that dc/ds does not change sign. The equation

recommended for this purpose, namely

G= (c/co)- , (26)
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is a compromise which covers the range of launch angles and source depths in

Figs. 11 through 13; actual m values along the different rays vary from 0.9 to 2.3.

Accordingly, Eq. (26) is expected to predict log G (and hence the reduced distance x)

within a factor of 2, under typical ocean conditions and without requiring detailed

information on the ocean profile and ray path.

F. The Approach to a Caustic

A caustic is formed when neighboring rays cross; the ray tube area then

vanishes, and according to geometric acoustics the intensity would be infinite. In

the region within a wavelength or so of the caustic, this prediction is invalid.

However, up to this region a marked increase in G is expected as the rate of

nonlinear distortion accelerates along the converging ray tube.

Figure 14 shows two neighboring rays which intersect at range xc , on the

caustic. By simple geometry, we can relate the area of the converging wavefront to

the launch angle derivative of the ray angle, (dO/do ), evaluated at the caustic
(subscript c).

§(x) dgo. Ray launched at 9 0

Ray launched
at 0 +de •

0 0

xc

FIGURE 14

SKETCH SHOWING RAY TUBE CONVERGENCE AT A CAUSTIC

The resulting variation of G--which is dominated by the ray tube area

convergence-- folows from the analysis given below.
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Appendix F gives the logarithm of G as an integral along the ray path,

S

in G(s) F(s)=J{As') - -L ds' .(27)

0

The quantity A(s) is related to the ray tube area S(s), and is defined by

A(s) = lim I S - Y C_ (28)

S6-0 0 0 %

It is clear from Fig. 14 that as the caustic is approached (at x=x c), the ray

tube area varies as
S- (xc - x) (x < xc) (29) 0

and that the other terms in the integral above may be regarded as constant in the

neighborhood of the caustic. The change in F(s) between x and xc follows as

xc

S(dx 30)
f c cos ecx

where K is the constant of proportionality in the asymptotic expression for A(s)

deduced from Eqs. (28) and (29):

A(s) c K(xc - x)-  , (x <x) . (31)

Although the integrand in Eq. (30) is singular, the integral is finite and given

by

AF (xc - x) Y  (32)
cose c 2

The constant K may be deduced from Eq. (28) and the ray tube area relation

S xt cose -

-2 sOo ' (33)0- so 0
0
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if we make use of the asymptotic result S

(~x)c N - x C)(c = 0 by definition)

=1- (zx (x- xC)
C

= 8tanO . (x - x
= o X= C

sec 2Oc . ( (x 134)=d 0-0 c x  xc )

The value of K thus obtained is -

K =-(cose cosO) Xc , (35)
0 o c

which when combined with Eq. (32) above gives

AF -2 () (5 dO x -X)(6
00 ) ' Xc)X (36)

For purposes of rough estimation the factor (ac/ao)(cc/Co) may be replaced

by 1. Then we find, on putting x.= 0.9 xc, that over the final 10 percent of the

horizontal range up to the caustic, G increases by a factor exp[AF(10%)] defined -

as follows:

G(x c)/G(0.9xc ) = exp[rF(10%)] (37)

where

2Fo, dO (38)
10 Y

• It is assumed that negligible ray bending occurs over the final 10 percent of the
range, so that the asymptotic relation (36) may be applied. For the relevant ray
paths, see Figs. 9(b) and 10(b).
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The numerical examples discussed in this report include four rays which form

caustics. These are the rays launched at 0 values of 0* and 7.5", from a depth of

1200 m (both ocean profiles). For these four rays, Table V lists values of the

following parameters:

(a) The horizontal range xc at which the caustic is formed.

(b) The ray angle 0 c at the caustic. -

(c) The derivative (-dO/dO evaluated from the relation-) c cos O)c

doc = 2 ) (39)

which follows from Eq. (34).

(d) The factor exp[AF(10%)] by which G(x) is estimated to increase

between 0.9 xc and xc, evaluated from Eq. (38) above.

TABLE V. RAY PATH PARAMETERS EVALUATED AT THE
CAUSTIC .
Results for two different ocean profiles (as in
Table III). The source is located near the sound
channel axis (source depth = 1200 m).

10 xc 0c (-dO/d 0o) c  Profile G(xc)
G(O.9x)

(deg) (km) (deg)

0 7.7605 -0.01 3.6747 N. Atlantic 1.39
7.5 28.687 -1.07 7.2158 N. Atlantic 1.27

0 15.4905 0.15 5.3047 N. Pacific 1.32
7.5 36.730 -1.14 6.4757 N. Pacific 1.28
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0

The range derivative x required for the last two table entries is provided at each 0

point along the ray path by the MEDUSA program, and values at the caustic have

been deduced by linear interpolation.

It is interesting to note, from Table V, that (-d9/do )c is significantly greater •

than one (of order 5) for the examples studied. The larger this ratio becomes, the

smaller the increase in G associated with convergence of the ray tube, for a given

starting value of x/x c (assumed close to one).

The final column in Table V shows that the predicted increase in G, between

0.9 Xc and the caustic location Xc, is of order 30 percent. The numerically

calculated increases, shown in the plots of G versus x (see Figs. 9(b) and 10(b)

discussed earlier), are considerably less, of order 5 to 10 percent. The reason is that S

the numerical plots are terminated at the last step b.fore the caustic is reached. In

order to continue the plots up to the caustic, it would be necessary to modify the

MEDUSA ray tracing program to locate the caustic automatically.
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V. CONCLUSIONS

The principal conclusions from the present study of nonlinear propagation in an
inhomogeneous ocean are as follows.

(1) An analytical model for finite-amplitude sound propagation in an in-
homogeneous ocean has been set up, based on ray theory combined with
the weak-shock approximation.0

(2) Within the framework of the model, separation has been achieved

between the nonlinear aspects of the problem and the purely linear
aspects, by defining a distance modification factor for nonlinear propa-

gation.

(3) The distance modification factor G defines the equivalent propagation
distance in a uniform ocean,

s~ sG

5equiv =s

which reproduces the nonlinear distortion found in the inhomogeneous

case under the same source conditions.

(4) An asymptotic theory, valid for ray paths along which dc/ds does not
change sign, predicts that G is principally a function of the local

sound speed ratio c/c0.

(5) A numerical scheme has been developed for calculating G. Input data
for the calculation is provided by a ray tracing program developed at
ARL:UT. The scheme has been verified for an idealized ocean profile
with a constant sound speed gradient, by comparing the results with an
exact analytic solution for G which has been developed for this case.

(6) The distance modification factor has been evaluated numerically, for
two typical deep ocean profiles and several combinations of source
depth and ray launch angle. Up to the point on each ray path where
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dc/ds changes sign, the asymptotic theory is found to yield an approxi- 0

mate collapse of all the results in terms of c/c o .

(7) Some of the rays in the numerical study exhibit caustic formation. The

increase in G which occurs, as a ray approaches a caustic, has been

predicted asymptotically.

(8) The range limitations on weak-shock theory are being explored in a
separate study, with particular reference to transient pulses in a real 6

ocean with chemical relaxation effects.
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A function of s, Eq. (F-2)

a profile constant, Eq. (24) and Appendices D, E; constant in empirical
Eq. (C-3) for

B function of s, Eq. (F-13) "

b profile constant, Appendix D; constant in empirical Eq. (C-4) for 3

C constant, Eq. (D-26)

Cp Pconstant-pressure specific heat

c sound speed

F function of s, Eq. (F-8); function of (P,T,S), Eq. (B-5)

f general function; derivative of F(s), Appendix F

G distance modification factor for nonlinear propagation in an inhomo-
geneous ocean, Eq. (9)

K constant in asymptotic A(s) expression, Eq. (31)

m power law index, Eq. (25); profile index, Eq. (D- 13)

Nc,Na number of points used to define numerical profiles of c(z), or(z)

n power law index, Eq. (12)

P hydrostatic pressure (kgf/cm2 )

P1 gauge pressure

p acoustic pressure

p reduced pressure

S ray tube area; salinity (0/oo)

s distance along ray from source

SO  reference distance close to source

T temperature (°C)

t time

t' retarded time for linear waves, Eq. (2)

W function of s, Eq. (F-I)



x horizontal range 0

x reduced distance, Eq. (6)

z depth below surface

z source depth -

0P(pc
5 )2

&T thermal expansion coefficient

P3 nonlinearity parameter

launch angle derivative of z(0oX) on ray, Eq. (11)

0 ray angle (downwards from horizontal)

0o  launch angle 0

X cose 0, Appendix D; function of (T,S), Eq. (B-4)

launch angle derivative of x(O ,z) on ray, Eq. (10)

p fluid density

9 dimensionless sound speed variation, Appendix D

Snonlinear retarded time variable

0 latitude angle

Subscripts

o value at source

c value at caustic
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APPENDIX B

FORMULAS FOR HYDROSTATIC PRESSURE, DENSITY, SOUND

SPEED AND NONLINEARITY PARAMETER IN THE OCEAN.
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In the expressions below, P is the hydrostatic pressure in kgf 1cm 2

(1 kgf/cm2 = 0.980665 bar). Gauge pressure relative to 1 atm is denoted by

P'=P- 1.033 . (B-1)

Also T is the temperature in "C, and S is the salinity in °/oo. .

Hydrostatic Pressure

Leroy's formula5 for hydrostatic pressure P as a function of depth z (in m) and

latitude 0 is as follows:

P = 1.04 + 0.102506 (1 + 0.00528 sin2 O)z + 2.524E-07 z2  (B-2)

This formula is supposed to be valid for all oceans except the Black Sea and the

Baltic.

Density (PTS) 0

36The density p (in kg/m) is given by Eckart's formula6

999.97 (
P 0.698 + X/F '(-3)

where

X= 1779.5 + 11.25 T - 0.0745 T2 - (3.80 + 0.01 T)S , (B-4)

and

F=5890+38T-0.375T 2 +3S+0.96784P . (B-5)

Wilson and Bradley 7 have given an alternative formula, based on more recent data,

which will be compared with Eq. (B-3) in the next phase of this study.

Sound Speed c(PTS)

The sound speed c (in m/sec) is given by Wilson's formula8  
-

c = 1449.14 + VP + VT + VS + VSTP (B-6)
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0

in which the V's are polynomials of up to 4th degree in the indicated variables.

Explicit expressions are given in Ref. 8.

Nonlinearity Parameter (PTS)

The nonlinearity parameter # is given by Carlton's formula 9

= 3.3685 + 9.874E-07 S3

+ 7.799E-06 T3 + 1.027E-03 P 0

- 2.276E-10 P3 + 5.429E-04 ST

- 8.641E-07 STP' - 1.542E-05 ST2

+ 1.620E-08 T3P . (B-7) -

00
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APPENDIX C

APPROXIMATE RELATIONS FOR e,1,AND DENSITY p IN SEAWATER .
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In this Appendix we examine the validity of the power law approximation for

ct in terms of sound speed, Eq. (12). We also show that the acoustic properties

(a,Xp) in seawater may be quite accurately expressed in terms of just two
variables, sound speed and temperature, rather than the usual three (temperature,

pressure,and salinity). Finally, the relation for the nonlinearity parameter 8 used by

Petukhov and Fridman4 is shown to be inaccurate, and an alternative relation of
similar form is given.

Power Law Relation between a and Sound Speed

In Section III.B, the relation

(c)-n (c- 1)
0 0

. was proposed. Here a denotes the product /(pc r , and clearly must depend in
* general on two other variables (e.g., pressure and salinity) besides the sound speed.

Nevertheless Eq. (C-1) provides a first approximation to the actual variation of a

with depth in the ocean, as we shall show here.

Values of a computed from the formulas given in Appendix B are plotted
against the sound speed in Figs. CI through C3. Isotherms are the gently sloping
curves marked T=0, 10, 20 (degrees C) at their left ends, respectively. Isobars are
the steeply sloping curves marked P=1,200,4O0,... at their upper ends, respec-
tively. The reference value used for normalization corresponds to (100C, I bar,
35°/oo). Because of the log-log scale, any power law of the form (C-I) will appear
as a straight line on the graph.

Below the first 200 m in a typical deep ocean profile, e.g.,the North Pacific
profile of Fig. 4, the temperature falls relatively rapidly from around lOC near the
surface to 2-30C at 1-2 km depth. Below 2 km the temperature remains almost

constant. The corresponding variation of with depth may thus be deduced from
Fig. Cl, if we assume a constant salinity of S=35 0 /oo. The depth profile can be
traced on Fig. Cl by noting that the pressure (in bars) is approximately one-tenth of

the depth (in meters).
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The resulting trace follows quite closely the line marked n = I in Fig. CI. A

similar result is obtained by tracing the North Atlantic profiles of Fig. 4 onto

Fig. C3, which incorporates an appropriate temperature-salinity relation.

We conclude that the power law Eq. (C- 1), with n=1, provides a reasonably

accurate model of the depth dependence of a suitable for analytical studies.

Under certain restricted conditions a different index may be preferred, however.

For example, at 0°C and depths less than 4 km, n=O is more accurate.

Acoustic Properties as Functions of Sound Speed and Temperature

In Fig. C4, the density of seawater is plotted against sound speed. The

same grid of temperature and pressure values has been used as in the previous

three figures, although the constant-pressure lines are not drawn. Furthermore

the grid has been evaluated for four different salinity values (S=34, 35, 36,

37 °/oo), although again for clarity these are marked only once.

The conclusion drawn from Fig. C4 is that the density of seawater may be

determined quite accurately over a realistic salinity range from a knowledge of

the sound speed and temperature, without recourse to a third parameter (e.g.,

pressure or salinity).

Figure C5 shows that a similar collapse along lines T=const. occurs for the

nonlinearity parameter 0, over the same range of salinity. It follows that a

knowledge of (c,T) in the ocean is sufficient to estimate the important remaining

acoustic properties P (or a) and p.

Empirical Relation between Nonlinearity Parameter and Characteristic
Impedance

An expression for the nonlinearity parameter of any inert fluid, in terms of

other thermodynamic derivatives, is
r_ .

P=I+pc (DT I- (8 )P (C-2)
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Here aT is the coefficient of thermal expansion, and C is the constant-pressure -

specific heat.

Guided by Eq. (C-2), Petukhov and Fridman4 have proposed that the

variation of fi in seawater be estimated from 0

= I + pca (a = const.) , (C-3)

which amounts to treating the bracketed factor in Eq. (C-2) as a constant.

Figures C6 and C7 show P plotted against pc (again using the formulas in

Appendix B), for two different salinity values. Evidently this presentation yields

quite an accurate single-line collapse, for pressures and temperatures in the range

P = 1-200 bar, T=0-20*C. However, Eq. (C-3) as it stands does not fit the data at

all closely; it predictn the lines marked (a) in Figs. C6 and C7. (The constant a

has been chosen to give the correct value of B at P = I bar, T=10"C).

A much better fit to the data, for typical ocean conditions, is given by

p = -2 + pcb (b = const.) . (C-4)

Equation (C-4) is represented by the lines marked (b) in Figs. C6 and C7. A single

value of the constant, m
b =3.63 •10 - 6 m s/kg ,(C-5)

has been used for each salinity.
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APPENDIX D

ASYMPTOTIC RAY RELATIONS FOR SMALL TURNING ANGLES
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Relations are derived below for the horizontal range x, the ray path length s,

the ray tube area ratio S/5 o, and the nonlinear distance factor G, in terms of the

dimensionless change in sound speed,

c0
C
Co

Here c 0 is the sound speed at the source; a basic assumption in the analysis is that a

remains a small quantity. We also assume that the gradient of c(z) departs only

slightly from a constant value, as explained below.

Horizontal Range

The integral

x-f dzx tan (D-l)

ZO

may be converted into an integral over c (or a) by introducing a relation between c

and z. A convenient profile description, yielding almost-linear sound speed profiles

if the dimensionless parameter b is small, is
-O

a - ba (D-2)
a 2

This gives the differential relation

dz = a(I - bo)do , (D-3)

which is used to substitute for dz in Eq. (D-1).

Constancy of the horizontal phase speed with depth is expressed by

cosO 6 X(l + a) , (X = cos 0 ) (D-4)

from which it follows that

tanG- 1  X +2 ( + a) 2  (D-5)

- (l+ a)
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We substitute this expression in Eq. (D-1), along with Eq. 'D-3), and expand the

integrand in powers of the small quantity a. Retaining only a and a2 terms gives 0

x-acot o .[a+ (csc 2
0o - b)a2 | ; (D-6)

0 2 00

this approximation has a relative accuracy of order a.

However, the asymptotic result above is not valid for ray angles too close to

zero. The next-order (a 3) term, in the brackets on the right of Eq. (D-6), has a

coefficient

1 4 1 2 1lb ; D7

it therefore ceases to be small compared with the a2 term, whenever 10 is of order

a or smaller.

Ray Path Length

By applying the profile assumption (D-2) to the arc length integral

f dz(-)
z0

sinO (D-8)

0

and making the same approximations as for the horizontal range, we find

s a csc o 0 +(cot 2 o - b)a 2  . (D-9)

Again, this asymptotic result breaks down for ray angles which are too shallow. In

particular, it does not hold through a vertex, since Eq. (D-9) implies only one value
of s exists at each depth.

More precisely, Eqs. (D-6) and (D-9) imply that x and s are uniquely deter-

mined by the local sound speed; they therefore become invalid when dc/ds changes

sign along the ray path.
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0

Ray Tube Area Ratio

Equation (9) gives

- x sin 0cos0 ~ /8) (D-10) *
o 0 X 0 -- n

The launch angle derivative (Q) of the horizontal range follows from differentiating

Eq. (D-6). Also, to first-order accuracy in o,

sinO cm sino (1 - cot 2 * ) . (D-l)

Combining these results yields the asymptotic approximation . .
2

S - cot 00 2  [ + (csc 2 - b)(cr (D-12)
o x2 o

0

Comparison of Asymptotic and Exact Results 0

Before proceeding to find an expression for G, it is instructive to check the

above asymptotic results against known exact solutions. Analytic solutions are

available for certain profiles in the family
zmCo=C(l +-) , (m =const.). (D-13)

o ma

(a) Case m =I (linear profile):

x = a sec 00 (sin 0 0- sin0) ; (D-14a)

s =asec 0 (0 -0) ; (D-14b) __9_

The integrals required for m = 1/2,1/3 are given in Gradshteyn and Ryzhik's Table

of Integrals,12 2 •2723) and (7).
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s = = -) sec 0 (sin 0 _ sine)2  (D- 14c)
o xx0 0 0

(b) Case m = Y (parabolic profile):

x =a sec 2 00 •[(sino 0cos00 - sin0 cosO) + (00 - 0) . (D- 15)

(c) Case m = 1/3 (cubic profile):

3 3 30x = a sec 80 # [3(sin ° - sine) - (sin 80 - sin e)]. (D-16)

In order to check the previous asymptotic expansions--obtained using

Eq. (D-2) for the sound speed profile--against the exact results given here, we need . -

to relate the profile parameters b and m. Equation (D- 13) implies that

I +- 0 ( + ,)I/ (D)-17)
ma

which may be expanded in powers of a to yield

1:- (1- )02 + 0(ff3) .(D-I18)

a m

It follows that to first-order relative accuracy in a, the profiles in Eqs. (D-2) and

(D- 13) are equivalent if we set

b =I- . (D-19)m

Expansion of the exact results given for cases (a), (b) and (c) above--a rather

lengthy process- -demonstrates agreement to first-order accuracy, as expected, with

the asymptotic expressions (D-6), (D-9) and (D- 12).

Reduced Distance

The reduced distance is defined by

s _0

SS



To convert the integration variable from s to a, we note that 0

dSs (D-2 1)
sinG

then using Eqs. (D-3) and (D- 11) gives

ds a csce (1 -b AXI + cot2 o •da
0 0

acsce o  U , - bOfldc . t (D-22)

We model the a(z) dependence by the relation

a c n =const. (D-23).•

thus

I - no, (D-24)

to first order in a.

Relations (D-22), (D-24), and (D- 12) are now substituted in the reduced .

distance integral (D-20) to obtain the 0(o) asymptotic result (for s6-.0)

x a a0 csc 0  (in2- -Co) (a 0) (D-25)x~ oCC0 (an, 0 0

where

C= (n+ 1) - (csC2 0 -b) . (D-26)

A more instructive version of Eq. (D-25) is obtained by noting that in the limit

* o-a 0, the coefficient a O csc eo reduces to so, while to first order in a

t Eq. (D-9) is obtained by integrating this result.
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-Ca nOl - Cod) .(D-27)"

Thus the reduced distance is given in terms of a by

xsIn [(- ca) (].(-28)

This result may be compared with Eq. (9) earlier, which defines the distance 0

modification factor G. The difference is that Eq. (D-28) contains the factor o/oo in

the argument of the logarithm, as compared with s/s in Eq. (9).

Equation (D-28), with x entirely in terms of a, would in fact be appropriate if -
we had chosen to follow Ref. 4 and examine departures of x from

soln - rather than soln-
0 0

(Note that the two expressions coincide only for a linear sound speed profile and
small turning angles.) Petukhov and Fridman in their paper4 used the first
expression as their reference; we prefer the second because it leads to a much

simpler asymptotic result, as shown below.

The Distance Modification Factor G

The factor G is defined in the present report by

=sln (-L G) ; (D-29)
0o

its asymptotic value in the case discussed above may be found in terms of a, by
equating arguments in (D-28) and (D-29) and using the arc length expression (D-9).

The result is simply

IGft I - (n + -) a (D-30)

The following points may be noted in relation to Eq. (D-30).

(a) There is no influence of launch angle (9o) on the factor G as defined

above, up to first order in a.
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(b) Likewise there is no influence of profile curvature (as expressed by the

parameter b), up to first order.

(c) These features do not apply if we follow Petukhov and Fridman4 and .

study departures of from soln(o/o).
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APPENDIX E

THE LIMITING CASE OF VERTICAL PROPAGATION
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In an earlier report on the topic of nonlinear sound propagation in a depth

dependent ocean, Carlton and Blackstock1 analyzed the case of vertical propagation

using a plane wave model. The purpose of this Appendix is to point out that even

the vertical propagation of sound, from a point source in a depth dependent ocean, 0

cannot be properly modeled without considering refraction. Thus the one-

dimensional analysis of Carlton and Blackstock, although correct for the plane wave

model they assumed, should not be applied to radiation from real sources in the

ocean, even at large distances.

Area Variation in a Vertical Ray Tube

For purposes of illustration, we assume a profile in which the sound speed

increases linearly with depth:

c(z) c (l + z/a) . (E-l)

The horizontal range (x) in this situation is related to the depth (z) and launch angle

(00) by

x=a an o+ [sec 0 -(z/a+ )1}. (E-2)

Figure El shows a near-vertical ray (0 close to 90), for which the minus sign in

Eq. (E-2) is appropriate (the plus sign applies when the ray has passed through a

vertex and is traveling upwards). Since cos 0 approaches zero, it is appropriate to
0

write Eq. (E-2) in asymptotic form as

x e z cote • (I + z/2a) + O(cos 30) . (E-3)

Eq. (E-3) is valid for all z values provided z/a is of order one or less.

It follows that a vertical ray tube, formed by rotating the ray in Fig. E- 1

about the z axis, has an area (S=irx ) which varies with z as follows:

S z 2 (1 Z2
S : ( (1 + ) , (zo/z--0) . (E-4) ... L_
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FIGURE E l

DEFINITION SKETCH FOR NEAR-VERTICAL RAYS

Rotation about the z axis forms a ray tube with its axis vertical. 0

In practical ocean applications, z is small compared with a--in other words the

percentage change in sound speed along the ray path is small--and Eq. (E-4) may be

approximated by -
2i

S z(- (E-5)

in view of Eq. (E-1). -

Interpretation of Eq. (E-5)

(a) In a uniform ocean, the c/c 0 factor equals unity, and Eq. (E-5) represents

spherical spreading.

(b) More generally, wavefronts in a stratified ocean do not spread

spherically, even along a vertical propagation path. .
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S
(c) In calculating the reduced distance integral

So

A S - .1
s 0

s 0

along a vertical ray, it is inconsistent to allow for the vertical

variation of ct while neglecting the non-spherical spreading factor
c/c o indicated by Eq. (E-5) above.
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APPENDIX F

EVALUATION OF THE FACTOR G VIA RAY PATH INTEGRATION
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It is convenient to calculate the distance modification factor G directly, .....

rather than by first calculating i from Eq. (6) and then inferring G from Eq. (9). In

this Appendix we relate G to a ray path integral F, and then discuss the numerical

method used to evaluate F.

Equation (6) for the reduced distance may be written as

x I W(s,)ds' , (F-1)
0

where the arc length weighting factor W is given by

•-o ow(s) = S- -Y2

= S A(s) , say. (F-2)

Note that A(s) has dimensions of inverse length. It is independent of the initial

distance so0 along the ray, in the limit so--0. By substituting for S/S o from Eq. (11), 0

we obtain

A(s) -(x (F-3)

The definition of G, Eq. (9), is

x= s' n(G •s)(F-4)

0 s0

which may be differentiated with respect to s to give

dx So dG So+ -- - . (F-s)

Equating the right-hand side to s0 A(s)--from Eq. (F-2)--yields

I dG -A(s)- (F-6)
Gd -
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It follows that 0

G = exp F(s), (F-7)

where
SSfs)

F(s) - f(s)ds' f (s) A(s) - . (F-8)

0

The advantage of this formulation, in computational terms, is that the S

integrand in Eq. (F-8) is well-behaved as s' tends to zero, unlike W(s') in the reduced

distance integral (F-1) which is singular. Moreover, the starting distance so does

not appear in Eqs. (F-7) and (F-8).

A useful check on the numerical values of F obtained for small distances (or

small turning angles) follows from the asymptotic expansion

1 _-(n)-_) sin o  , (s-s o ) (F-9)s a 00
n

which is based on a locally linear profile approximation, as in Eq. (24), with ac

constant. The derivation is straightforward using Eqs.(D-9) and (D-12).

Equation (F-9) makes it clear that f(s) tends to a constant value as s tends to zero. _

The numerical integration scheme used to evaluate Eq. (F-8) is described next.

Since the quantities needed to evaluate f(s) are available at each step of the

MEDUSA ray tracing program, it is convenient to use the ray-tracing steps 0

(which are of uneven length) as numerical integration steps in evaluating Eq. (F-8).

We use the second-order approximation

f(s)ds"- h(f + fh. ( - h2 (f f_ )  (F-0)
J 2 i i-I T2 -il Fb

s i- 1

where h is the step size (si - si_ ) in arc length. For the first integration step, we
S

use
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s

of(s)ds s f(s1 ) (F- 11)

since f(s) is asymptotically constant as s tends to zero.

The values of the derivative f' (s) required by Eq. (F- 10) are calculated as

follows. Logarithmic differentiation of Eq. (F-2) along the ray path yields

I

f'(s) = A(s)B(s) + (F-12)
S

where

2 z cose _ 1 (; +- )coso (F-13)CRs) 2-- sn+ Zx xx

In the above equation, x subscripts denote derivatives with respect to horizontal

range (x), following the ray path. In particular,

zx = tane . (F-l14)

The quantities needed to evaluate A(s) and B(s) are provided by the ray tracing

program MEDUSA at each step. Thus the ray tracing program is run first, and the

appropriate output stored for transfer to the integration program, which then

evaluates F(s.) at each step. Values of G(s i) finally follow from

G(s i) = exp F(si ) • (F- 15)
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